

Sustainable Organic and Low Input Dairying (SOLID) European Project n° 266367

The environmental footprint of organic and low-input dairying

Brussel March 2016 John E Hermansen & Marie T Knudsen, AU

Environmental impact of dairy products Why care?

- Meat and dairy products are estimated to be responsible for around 20% of the total environmental impact originating from all human consumption in EU
- Of this, milk is estimated to be responsible for 1/3
 - The dairy sector emit 190 mill t of CO_2 eq.
 - Responsible for around 40% of total eutrophication pressure from meat and milk
- Non-quota sectors (agriculture) are anticipated to be included in achieving the reduction goals for greenhouse gas emissions
 - By 2050 agriculture will represent 1/3 of EU-emissions (pressure for further reductions)
 - Increased capacity to preserve and sequester carbon may be a tool
- EU Biodiversity strategy 2020 ask for

Increased focus on quantifying and documenting the environmental performance

- Allow decision makers in business and among consumers to consider the environment impact of the particular products they use
 - The life cycle methodology
- First, business and NGO driven initiatives like Round Table for Sustainable Consumption
 - Setting methods and rules for quantification
- Now, Commission driven initiative the Product Environmental footprint (PEF)
 - Setting guidelines about dimensions to be considered and methods to estimate these, also for foods including dairy products
 - Aim to set the authoritative way to declare the environmental performance in EU

From PEF – screening report – dairy products

- Biodiversity is a key environmental issue for the dairy sector, which is only partly addressed through current LCA methodologies
- Carbon sequestration in sustainable managed grazing dairy systems should be considered where relevant

In this project we have made effort to operationalize these aspect to be included in the assessment

Which environmental impacts of milk?

Global warming

Carbon footprint of milk from 23 farms

Soil carbon sequestration - should be included!

Organic farming and grassland based farming have significantly higher soil carbon sequestration compared to conventional.

BUT normally not included in life cycle assessments.

Carbon footprint of milk from 23 farms - including soil carbon sequestration

UK

Finland

Biodiversity should also be included!

Organic farming have significantly higher biodiversity compared to conventional.

BUT normally not included in life cycle assessments.

Biodiversity impacts of milk from 23 farms

Biodiversity vs. carbon footprint

Impact categories covered (PEF)

Environmental impact category

Global warming potential (kg CO₂ eq./kg ECM)

Acidification (mol H⁺ eq. /kg ECM)

Marine eutrophication (g N eq. /kg ECM)

Terrestrial eutrophication (mol N eq./kg ECM)

Fresh water ecotoxicity (CTUe/kg ECM)

Potential biodiversity damage (PDF/kg ECM)

Land use (m²/kg ECM)

La Handard La

Minerals, fossil and renewable energy (g Sb eq./kg ECM)

Overall environmental assessment of organic and conventional dairy production

Making a Life Cycle Assessment of milk

Conventional dairy production in DK

Key characteristics of dairy systems

	Mixed (DK)		Grass-based (UK)		Mountainous (AT)		
	Conv.	Org.	Conv.	Org.	Conv.	Low.	Org.
No. of cows	168	168	118	127	12	13	10
Milk production (kg ECM/cow)	9599	8708	7411	6193	6230	5120	5500
Outdoor, cows (days/year)	0	150	172	224	20	180	80
Farm area (ha)	150	208	129	153	12	16	13
% Cereals/grain legumes	28	35	11	8	23	-	16
% Maize	33	5	9	-	16	-	-
% Pasture	37	58	80	92	62	100	85
Mineral N fertilizer (kg N/ha)	58		134		49	5	
Imported feed (kg DM/ha)	2437	1321	1422	695	535	470	258

Environmental impact of organic and conventional milk, per kg milk

	Impact category	Mixed (DK)		Grass (UK)		Mountainous (AT)		
		Conv.	Org.	Conv.	Org.	Conv.	Low.	Org.
5	Global warming, kg CO_2 eq.	1.06	1.00	0.87	0.75	0.97	0.98	0.92
	Acidification, mol H ⁺ eq .	0.016	0.013	0.012	0.011	0.020	0.017	0.018
	Marine Eutrop., g N eq.	7.8	5.9	9.3	5.9	8.3	15.3	9.6
	Terrestrial Eutro.,mol N eq.	0.07	0.06	0.05	0.05	0.09	0.08	0.08
	FW ecotox., CTUe	0.9	0.03	0.8	0.02	0.7	0.2	0.01
	Biodiversity Damage, PDF	0.5	- 0.1	0.5	- 0.5	0.4	- 0.4	- 0.5
	Land Use, m ²	1.0	1.5	1.7	1.9	1.4	2.1	2.0
_	Mineral and energy, Sb eq.	0.004	0.002	0.002	0.001	0.0006	0.0002	0.0006

Main messages

- Carbon footprint of organic milk is reduced when soil carbon sequestration is included in the assessment
- Carbon footprint decreases within creasing milk yield per cow, but to a lesser extent when soil carbon is included in the assessment
- It is possible to include biodiversity in the life cycle assessment of milk through an indicator of biodiversity damage.
- Generally milk from organic farms does not imply biodiversity damage contrary to milk from conventional systems
- Inverse relationship between carbon footprint and biodiversity damage
- Ecotoxicity impacts are significantly lower in organic dairy systems and should thus be included in the overall environmental assessment

- Within all types of dairy production there are improvement options in relation to environmental impact
- Organic dairy system perform generally better in terms of biodiversity, ecotoxicity and marine water eutrophication, while global warming impacts are close to conventional
- Land use are higher per kg milk in low input and organic dairy systems and thus indirect land use impact are probably higher which will increase the global warming impact if included in the assessment
- Low input systems with lower milk yield per cow can perform as good as or better than high input systems in terms of global warming

This work was done in a collaboration with

- Aberystwyth University (Peter Dennis)
- LUKE (Sirpa Kurppa, Sanna Hietala, Sampsa Nisonen)
- ORC (Susanne Padel, Laurence Smith)
- BOKU (Werner Zollitsch, Stefan Hörtenhuber)
- AU (Teodora Preda, Nancy Peña Valbuena, Sylvestre Njakou Djomo)

Carbon footprint of organic and conventional milk

