Finding the right cow for an Alpine organic low-input dairy system

Marco Horn¹, Andreas Steinwidder², Johann Gasteiner², Leopold Podstatzky² and Werner Zollitsch¹

- ¹ University of Natural Resources and Life Sciences, Vienna, Austria , marco.horn@boku.ac.at
- ² Agricultural Research and Education Centre Raumberg-Gumpenstein, Irdning, Austria

Aim

Comparing productivity, body weight and reproductive performance of different cow types and thereby breeding objectives concerning to assess their suitability for an Alpine pasture-based dairy production system.

Conclusions

- BS produced more milk and milk solids than HFL, but this was paralleled by a higher and longer lasting mobilisation of body tissues.
- The less negative energy balance together with the higher genetic merit for fertility resulted in the superior reproductive performance of HFL.
- The superior reproductive performance HFL may be seen as a particular strength in a seasonal low-input, pasture-based dairy system.

Background

Pasture-based milk production systems might be an alternative for Alpine dairy farming in the near future. As the cows´ fertility is of crucial importance in such low input systems, it is questionable whether conventional genotypes, selected primarily for milk yield under high input conditions, are most suitable.

Results

	Genotype		C (0 -1 -
	BS^a	HFLb	S _e ^c	P value
Length of lactation, d	326	297	40	0.016
ECM ^d yield, kg	6,402	5,354	623	<.001
Fat content, %	4.06	3.91	0.14	0.095
Protein content, %	3.33	3.11	0.08	<.001
Somatic cell count, n	127,190	127,570	23,541	0.743
ECM ^d yield/BW ^{0.75 e} , kg	0.17	0.17	0.01	0.747
BW ^f , kg	600	539	16	<.001
Week of BW nadir	24	19	7	0.012
BW-loss ^g ,%	12	10	4	0.037
Feed intake/BW ^{0.75} , kg	0.14	0.16	0.01	0.001
Calving to conception, d	103	73	40	0.016
Calving interval, d	395	353	43	0.002

^aBrown Swiss; ^bHolstein Friesian lifetime performance; ^cresidual standard deviation; ^denergy-corrected milk; ^emetabolic body weight; ^fbody weight; ^gbody weight loss from calving to nadir

Animals, material and methods

- Genotypes
 - High input: Conventional Brown Swiss (BS), selected primarily for high milk yield
 - Low input: Strain of Holstein Friesian (HFL), selected primarily for lifetime performance and fitness
- n = 91 lactations (BS=42; HFL=49), 4 years
- Mixed model (SAS 9.2) including cow within genotype as a random effect.

- BS was superior in most studied parameters of milk production and milk composition, but not in milk production per LW^{0.75}.
- BS went through a longer and more pronounced negative energy balance than HFL.
- HFL had a significantly higher total feed intake per LW^{0.75} from lactation week 1-18.
- HFL was superior for most parameters of reproductive performance studied herein.

